SUMMARY AGENDA

9:00 - 9:15 a.m. WELCOME REMARKS, INTRODUCTIONS

9:15 - 10:00 a.m. PKAL LEADERSHIP ACTIVITIES

10:00 - 11:30 a.m. ACTIVITY
Reformed Teaching Observational Protocol

11:30 a.m. - 12:30 p.m. INFORMAL POSTER SESSION & LUNCH

12:30 - 1:00 p.m. PRESENTATION
Measuring the Dynamics of Student Learning

1:00 - 2:00 p.m. WORKSHOP ACTIVITY
Rapid Assessment & Web Reports

2:00 - 3:00 p.m. ACTION ITEMS & PLANS FOR NEXT MEETING

3:00 - 4:00 p.m. REPORT OUT TO FULL GROUP AND DISCUSSION OF NEXT STEPS

4:00 - 5:00 p.m. RECEPTION
Welcome Remarks, Introductions

Time: 9:00 - 9:15 A.M.

Welcome
❖ Scott Franklin
 Professor of Physics
 Rochester Institute of Technology
❖ Anne Houtman
 Head and Professor
 Rochester Institute of Technology

PKAL 2.0 Strategic Plan

Mission
PKAL's mission is to be a national leader in catalyzing the efforts of people, institutions, organizations and networks to move from analysis to action in significantly improving undergraduate student learning and achievement in STEM (science, technology, engineering and mathematics) in preparation for careers and participation in this increasingly complex, globally-interdependent and technologically-driven world.

Vision
PKAL's vision is to significantly enhance the capacity of America’s colleges and universities to graduate more highly-qualified and liberally-educated STEM professionals and K-12 teachers, and to promote a higher level of among scientific literacy and reasoning all college graduates, with particular attention to broadening participation of underrepresented groups in STEM.

Goal
Regionally and nationally, PKAL will serve as the nexus of an interconnected and multidisciplinary community - bringing ideas, people, evidence, strategies and resources together – to more systemically lead change in undergraduate education to achieve PKAL’s mission and vision.
PKAL Leadership Activities

Time: 9:15 - 10:00 a.m.

Facilitators:

- Geoff Bowers
 Assistant Professor of Chemistry
 Alfred University
- Elizabeth Hane
 Associate Professor
 Rochester Institute of Technology
- Anne Houtman
 Head and Professor
 Rochester Institute of Technology

Since the first Summer Leadership Institute in 1996, PKAL has used Experiential Learning Exercises (ELE) as a means of teaching leadership and team building skills. During these exercises, we use the Experiential Learning Model based on Kolb’s Experiential Learning Cycle. See page 10 for more information.

Best Idea:

The authentic leader brings people together around a shared purpose and empowers them to step up and lead authentically in order to create value for all stakeholders. The dimensions of an authentic leader are: Pursuing purpose with passion, Practicing solid values, Leading with heart, Establishing enduring relationships, and Demonstrating self-discipline.

— Bill George, True North: Discover Your Authentic Leadership. 2007.
Activity

REFORMED TEACHING OBSERVATIONAL PROTOCOL (RTOP)

Time: 10:00 - 11:30 a.m.

Facilitators:
- Kathy Falconer
 Lecturer, Elementary Education & Reading
 SUNY - Buffalo State College
- Scott Franklin
 Professor of Physics
 Rochester Institute of Technology

- RTOP consisting of short videos of classroom activities, discussion with table about what they see in the videos, group summaries, as well as the application of consensus ideas to other videos to reinforce key ideas
- Website: http://physicsed.buffalostate.edu/AZTEC/RTOP/RTOP_full/index.htm
- See page 11 for RTOP materials

Best Idea:
In informal poster session & lunch

Notes:

Creativity is a lot like looking at the world through a kaleidoscope. You look at a set of elements, the same ones everyone else sees, but then reassemble those floating bits and pieces into an enticing new possibility. Innovators shake up their thinking as though their brains are kaleidoscopes, permitting an array of different patterns out of the same bits of reality. Change masters challenge prevailing wisdom. They start from the premise that there are many solutions to a problem and that by changing the angle on the kaleidoscope, new possibilities will emerge. Where other people would say, ‘That’s impossible. We’ve always done it this way,’ they see another approach. Where others see only problems, they see possibilities.

Kaleidoscope thinking is a way of constructing new patterns from the fragments of data available—patterns that no one else has yet imagined because they challenge conventional assumptions about how pieces of the organization, the marketplace, or the community fit together.

Keynote Presentation

MEASURING THE DYNAMICS OF STUDENT LEARNING

Time: 12:30 - 1:00 P.M.

Presenter:

Eleanor C. Sayre
Assistant Professor of Physics
Kansas State University

When do students learn science? How much, and in what way? How quickly do they forget? Physics Education Research (PER) is the field of physics that studies how people learn physics and how to teach them better. A classic method in PER is to pre-test students before instruction, teach them, then post-test afterwards to see how much they have gained. However, this method cannot capture the dynamics of student learning which are common to all disciplines. By testing students more frequently, we can observe rapid learning and forgetting, as well as destructive interference patterns. In this talk, I present data showing three kinds of “response curves” -- flat, step, and peak-and-decay -- and suggestions for how to measure the same kinds of behavior in your classes, whether they are in physics or other STEM disciplines.

Best Idea:
Workshop Activity

RAPID ASSESSMENT & WEB REPORTS (RAWR)
TIME: 1:00 - 2:00 p.m.

Facilitators:
- Eleanor C. Sayre
 Assistant Professor of Physics
 Kansas State University

See page 29 for activity sheet.

Best Idea:

I’d like my students to learn how to learn, to be involved in the process of teaching themselves. And to make commitments—not to be in love with the position, but to be in love with the search, so that if they find themselves not able to hold a position, if it turns out to be untenable, then they should have enough courage to say, “you know what I said last week? I no longer believe that.”

— Maya Angelou, 1993.
Action Items & Plans for Next Meeting

TIME: 2:00 - 3:00 P.M.

- Facilitators: TBD

Seating by institution type, work on action items and plans for next meeting. Attendees will discuss and share:

1. What challenges are facing your institutions?

2. How can a network of cross-disciplinary, cross-institutional faculty and leaders help?

3. What do we want to do? What will success look like?

Best Idea:
Report Out & Discussion of Next Steps

Time: 3:00 - 4:00 P.M.

Facilitators:
- Holly Lawson
 Associate Professor of Chemistry
 Director Science Education Partnership
 SUNY Fredonia

Best Idea:

Rules for Brainstorming

- No criticism. This is the premier rule of brainstorming. During the brainstorm itself, criticism is out. Whatever’s said goes on the list.

- Piggyback. Besides just making up ideas out of the air, take ideas already mentioned as a point of departure, extend them, and add a twist.

- Diversify. Try for different kinds of ideas—ideas in contrasting categories, ideas that come from different points of view.

Experiential Leadership Exercises

Experience - This cycle begins with an experience - an event or exercise in which the learner actively participates.

Reflection - Next the learner reflects on the experience, focusing on what happened, how he/she feels about it, etc.

Expansion - After reflecting, the learner expands on the original experience by identifying the abstract ideas, theories, and principles behind the exercise.

Application - The learner completes the cycle by transferring his/her newly acquired skills to situations in the "real world." This stage involves application of the experience to other situations and experiences with which the learner is engaged or will be engaged.

Real world application creates a New Experience and the cycle begins again.

After you have participated in a PKAL Experiential Learning Experience, you will be asked to reflect upon it, share your thoughts and feelings with others, contemplate and identify leadership and or teambuilding principles, and consider how you can apply these principles in your institutional transformation efforts. This is called “processing” or “debriefing”.

All PKAL Leadership Learning Experiences are presented as “challenge by choice.” This means that if you feel threatened in any way, physically or psychologically, by the challenge or problem you are asked to complete, you have the right to opt out of the activity and become a process observer. We do encourage you to participate even if this makes you a little uncomfortable because one aspect of leadership is risk taking and leaders needs to be willing and able to work outside of their comfort zones.

The Experiential Learning Exercises you will experience and the process we will use to debrief them are derived from work done during the past two decades by Sylvia Nadler (nadlers@william.jewell.edu) and Judy Dilts (diltsja@jmu.edu). Their activities and process are based on the Kolb learning cycle and from literature about how people learn.
Reformed Teaching Observation Protocol (RTOP)

Daiyo Sawada
External Evaluator

Michael Piburn
Internal Evaluator

and

Kathleen Falconer, Jeff Turley, Russell Benford and Irene Bloom
Evaluation Facilitation Group (EFG)

Technical Report No. IN00-1
Arizona Collaborative for Excellence in the Preparation of Teachers
Arizona State University

I. BACKGROUND INFORMATION

Name of teacher __________________________ Announced Observation?
(yes, no, or explain)

Location of class __________________________
(district, school, room)

Years of Teaching __________________________ Teaching Certification
(K-8 or 7-12)

Subject observed __________________________ Grade level __________________________

Observer __________________________ Date of observation __________________________

Start time __________________________ End time __________________________

II. CONTEXTUAL BACKGROUND AND ACTIVITIES

In the space provided below please give a brief description of the lesson observed, the classroom setting in which the lesson took place (space, seating arrangements, etc.), and any relevant details about the students (number, gender, ethnicity) and teacher that you think are important. Use diagrams if they seem appropriate.
Record here events which may help in documenting the ratings.

<table>
<thead>
<tr>
<th>Time</th>
<th>Description of Events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III. LESSON DESIGN AND IMPLEMENTATION

1) The instructional strategies and activities respected students’ prior knowledge and the preconceptions inherent therein. 0 1 2 3 4
2) The lesson was designed to engage students as members of a learning community. 0 1 2 3 4
3) In this lesson, student exploration preceded formal presentation. 0 1 2 3 4
4) This lesson encouraged students to seek and value alternative modes of investigation or of problem solving. 0 1 2 3 4
5) The focus and direction of the lesson was often determined by ideas originating with students. 0 1 2 3 4

IV. CONTENT

Propositional knowledge

6) The lesson involved fundamental concepts of the subject. 0 1 2 3 4
7) The lesson promoted strongly coherent conceptual understanding. 0 1 2 3 4
8) The teacher had a solid grasp of the subject matter content inherent in the lesson. 0 1 2 3 4
9) Elements of abstraction (i.e., symbolic representations, theory building) were encouraged when it was important to do so. 0 1 2 3 4
10) Connections with other content disciplines and/or real world phenomena were explored and valued. 0 1 2 3 4

Procedural Knowledge

11) Students used a variety of means (models, drawings, graphs, concrete materials, manipulatives, etc.) to represent phenomena. 0 1 2 3 4
12) Students made predictions, estimations and/or hypotheses and devised means for testing them. 0 1 2 3 4
13) Students were actively engaged in thought-provoking activity that often involved the critical assessment of procedures. 0 1 2 3 4
14) Students were reflective about their learning. 0 1 2 3 4
15) Intellectual rigor, constructive criticism, and the challenging of ideas were valued. 0 1 2 3 4
Continue recording salient events here.

<table>
<thead>
<tr>
<th>Time</th>
<th>Description of Events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
V. CLASSROOM CULTURE

<table>
<thead>
<tr>
<th>Communicative Interactions</th>
<th>Never Occurred</th>
<th>Very Descriptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>16) Students were involved in the communication of their ideas to others using a variety</td>
<td>0</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>of means and media.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17) The teacher’s questions triggered divergent modes of thinking.</td>
<td>0</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>18) There was a high proportion of student talk and a significant amount of it occurred</td>
<td>0</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>between and among students.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19) Student questions and comments often determined the focus and direction of classroom</td>
<td>0</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>discourse.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20) There was a climate of respect for what others had to say.</td>
<td>0</td>
<td>1 2 3 4</td>
</tr>
</tbody>
</table>

Student/Teacher Relationships

<table>
<thead>
<tr>
<th></th>
<th>Never Occurred</th>
<th>Very Descriptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>21) Active participation of students was encouraged and valued.</td>
<td>0</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>22) Students were encouraged to generate conjectures, alternative solution strategies,</td>
<td>0</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>and ways of interpreting evidence.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23) In general the teacher was patient with students.</td>
<td>0</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>24) The teacher acted as a resource person, working to support and enhance student</td>
<td>0</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>investigations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25) The metaphor “teacher as listener” was very characteristic of this classroom.</td>
<td>0</td>
<td>1 2 3 4</td>
</tr>
</tbody>
</table>

Additional comments you may wish to make about this lesson.
Reformed Teaching Observation Protocol (RTOP)

Daiyo Sawada
External Evaluator

Michael Piburn
Internal Evaluator

and

Kathleen Falconer, Jeff Turley, Russell Benford and Irene Bloom
Evaluation Facilitation Group (EFG)

Technical Report No. IN00-1
Arizona Collaborative for Excellence in the Preparation of Teachers
Arizona State University

I. BACKGROUND INFORMATION

Name of teacher _____________________ Announced Observation? ____________________
(yes, no, or explain)

Location of class _____________________
(district, school, room)

Years of Teaching _____________________ Teaching Certification ____________________
(K-8 or 7-12)

Subject observed _____________________ Grade level _____________________

Observer _____________________ Date of observation _____________________

Start time _____________________ End time _____________________

II. CONTEXTUAL BACKGROUND AND ACTIVITIES

In the space provided below please give a brief description of the lesson observed, the classroom setting in which the lesson took place (space, seating arrangements, etc.), and any relevant details about the students (number, gender, ethnicity) and teacher that you think are important. Use diagrams if they seem appropriate.
Record here events which may help in documenting the ratings.

<table>
<thead>
<tr>
<th>Time</th>
<th>Description of Events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III. LESSON DESIGN AND IMPLEMENTATION

<table>
<thead>
<tr>
<th></th>
<th>Never Occurred</th>
<th>Very Descriptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>The instructional strategies and activities respected students’ prior knowledge and the preconceptions inherent therein.</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>2)</td>
<td>The lesson was designed to engage students as members of a learning community.</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>3)</td>
<td>In this lesson, student exploration preceded formal presentation.</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>4)</td>
<td>This lesson encouraged students to seek and value alternative modes of investigation or of problem solving.</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>5)</td>
<td>The focus and direction of the lesson was often determined by ideas originating with students.</td>
<td>0 1 2 3 4</td>
</tr>
</tbody>
</table>

IV. CONTENT

Propositional knowledge

<table>
<thead>
<tr>
<th></th>
<th>Never Occurred</th>
<th>Very Descriptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>6)</td>
<td>The lesson involved fundamental concepts of the subject.</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>7)</td>
<td>The lesson promoted strongly coherent conceptual understanding.</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>8)</td>
<td>The teacher had a solid grasp of the subject matter content inherent in the lesson.</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>9)</td>
<td>Elements of abstraction (i.e., symbolic representations, theory building) were encouraged when it was important to do so.</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>10)</td>
<td>Connections with other content disciplines and/or real world phenomena were explored and valued.</td>
<td>0 1 2 3 4</td>
</tr>
</tbody>
</table>

Procedural Knowledge

<table>
<thead>
<tr>
<th></th>
<th>Never Occurred</th>
<th>Very Descriptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>11)</td>
<td>Students used a variety of means (models, drawings, graphs, concrete materials, manipulatives, etc.) to represent phenomena.</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>12)</td>
<td>Students made predictions, estimations and/or hypotheses and devised means for testing them.</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>13)</td>
<td>Students were actively engaged in thought-provoking activity that often involved the critical assessment of procedures.</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>14)</td>
<td>Students were reflective about their learning.</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>15)</td>
<td>Intellectual rigor, constructive criticism, and the challenging of ideas were valued.</td>
<td>0 1 2 3 4</td>
</tr>
</tbody>
</table>
Continue recording salient events here.

<table>
<thead>
<tr>
<th>Time</th>
<th>Description of Events</th>
</tr>
</thead>
</table>

2000 Revision
Copyright© 2000 Arizona Board of Regents
All Rights Reserved
CLASSROOM CULTURE

<table>
<thead>
<tr>
<th>Communicative Interactions</th>
<th>Never Occurred</th>
<th>Very Descriptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>16) Students were involved in the communication of their ideas to others using a variety of means and media.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>17) The teacher’s questions triggered divergent modes of thinking.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>18) There was a high proportion of student talk and a significant amount of it occurred between and among students.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>19) Student questions and comments often determined the focus and direction of classroom discourse.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>20) There was a climate of respect for what others had to say.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student/Teacher Relationships</th>
<th>Never Occurred</th>
<th>Very Descriptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>21) Active participation of students was encouraged and valued.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>22) Students were encouraged to generate conjectures, alternative solution strategies, and ways of interpreting evidence.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>23) In general the teacher was patient with students.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>24) The teacher acted as a resource person, working to support and enhance student investigations.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>25) The metaphor “teacher as listener” was very characteristic of this classroom.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
</tbody>
</table>

Additional comments you may wish to make about this lesson.
Reformed Teaching Observation Protocol (RTOP)

Daiyo Sawada Michael Piburn
External Evaluator Internal Evaluator

and

Kathleen Falconer, Jeff Turley, Russell Benford and Irene Bloom
Evaluation Facilitation Group (EFG)

Technical Report No. IN00-1
Arizona Collaborative for Excellence in the Preparation of Teachers
Arizona State University

I. BACKGROUND INFORMATION

Name of teacher __________________________

Announced Observation? ____________________
(yes, no, or explain)

Location of class __________________________
(district, school, room)

Years of Teaching __________________________

Teaching Certification ______________________
(K-8 or 7-12)

Subject observed __________________________

Grade level ________________________________

Observer _________________________________

Date of observation _________________________

Start time _________________________________

End time _________________________________

II. CONTEXTUAL BACKGROUND AND ACTIVITIES

In the space provided below please give a brief description of the lesson observed, the classroom setting in which the lesson took place (space, seating arrangements, etc.), and any relevant details about the students (number, gender, ethnicity) and teacher that you think are important. Use diagrams if they seem appropriate.
Record here events which may help in documenting the ratings.

<table>
<thead>
<tr>
<th>Time</th>
<th>Description of Events</th>
</tr>
</thead>
</table>

2000 Revision
Copyright© 2000 Arizona Board of Regents
All Rights Reserved
III. LESSON DESIGN AND IMPLEMENTATION

Never Occurred	Very Descriptive
1) The instructional strategies and activities respected students’ prior knowledge and the preconceptions inherent therein. | 0 1 2 3 4 |
2) The lesson was designed to engage students as members of a learning community. | 0 1 2 3 4 |
3) In this lesson, student exploration preceded formal presentation. | 0 1 2 3 4 |
4) This lesson encouraged students to seek and value alternative modes of investigation or of problem solving. | 0 1 2 3 4 |
5) The focus and direction of the lesson was often determined by ideas originating with students. | 0 1 2 3 4 |

IV. CONTENT

Propositional knowledge

6) The lesson involved fundamental concepts of the subject. | 0 1 2 3 4 |
7) The lesson promoted strongly coherent conceptual understanding. | 0 1 2 3 4 |
8) The teacher had a solid grasp of the subject matter content inherent in the lesson. | 0 1 2 3 4 |
9) Elements of abstraction (i.e., symbolic representations, theory building) were encouraged when it was important to do so. | 0 1 2 3 4 |
10) Connections with other content disciplines and/or real world phenomena were explored and valued. | 0 1 2 3 4 |

Procedural Knowledge

11) Students used a variety of means (models, drawings, graphs, concrete materials, manipulatives, etc.) to represent phenomena. | 0 1 2 3 4 |
12) Students made predictions, estimations and/or hypotheses and devised means for testing them. | 0 1 2 3 4 |
13) Students were actively engaged in thought-provoking activity that often involved the critical assessment of procedures. | 0 1 2 3 4 |
14) Students were reflective about their learning. | 0 1 2 3 4 |
15) Intellectual rigor, constructive criticism, and the challenging of ideas were valued. | 0 1 2 3 4 |
Continue recording salient events here.

<table>
<thead>
<tr>
<th>Time</th>
<th>Description of Events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2000 Revision

Copyright© 2000 Arizona Board of Regents
All Rights Reserved
V. CLASSROOM CULTURE

<table>
<thead>
<tr>
<th>Communicative Interactions</th>
<th>Never Occurred</th>
<th>Very Descriptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>16) Students were involved in the communication of their ideas to others using a variety of means and media.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>17) The teacher’s questions triggered divergent modes of thinking.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>18) There was a high proportion of student talk and a significant amount of it occurred between and among students.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>19) Student questions and comments often determined the focus and direction of classroom discourse.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>20) There was a climate of respect for what others had to say.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student/Teacher Relationships</th>
<th>Never Occurred</th>
<th>Very Descriptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>21) Active participation of students was encouraged and valued.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>22) Students were encouraged to generate conjectures, alternative solution strategies, and ways of interpreting evidence.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>23) In general the teacher was patient with students.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>24) The teacher acted as a resource person, working to support and enhance student investigations.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>25) The metaphor “teacher as listener” was very characteristic of this classroom.</td>
<td>0 1 2 3 4</td>
<td></td>
</tr>
</tbody>
</table>

Additional comments you may wish to make about this lesson.
Rapid Assessment and Web Reports

R·I·T

K·STATE.

7/28/12
1 Instructor Pages

Below is a diagram of how an instructor can navigate the RAWR web site.

Login

Report Problem

Reset Password

Home: Displays the classes the instructors teaches or has taught in the past. For each class, displays links for the Autostats and Group Autostats for that task.

Task Completion: Displays which students completed their assigned tasks.

Autostats: Graphs that display average performance over time for each task.

Group Autostats: Displays performance for each task for a single week.

My Account: Displays account information.

Account Settings: Allows the user to change his contact email and password.
2 Student Pages

Below is a diagram of how a student can navigate the RAWR web site.

Login
- Report Problem
- Reset Password

Home: Displays the tasks available for the student to take along with the due date for the tasks. In addition, if a student has started a task, but not yet completed it, the time left to complete the task is shown.

Task History: Displays the tasks the student has already completed along with the dates they were completed.

Task: Displays questions for the student to answer.

My Account: Displays account information.

Account Settings: Allows the user to change his contact email and password.
3 Student Timeline

Below is a timeline showing how a student interacts with RAWR in a typical task period (usually occurs once a week). Each tick on the timeline represents four hours.

Midnight, morning of starting date for a task.

4 a.m., morning of the due date for a task, student receives an email instructing him to take the task.

4 a.m., morning of the due date for a task, student receives an email reminding him to take the task if he hasn’t already.

11:59 PM, due date of the task, if the student has not completed the task by this point, it is entered into the database that the student did not complete the task.
4 Instructor Timeline

Below is a timeline showing how an instructor interacts with RAWR in a typical semester. Each tick on the timeline represents a week.

- Two weeks before the start of classes, instructor emails Dr. Franklin (svfps@rit.edu) stating intent to participate in RAWR.
- A few days before the start of classes, instructor emails Dr. Franklin (svfps@rit.edu) with class list.
- End of add/drop period, instructor emails Dr. Franklin (svfps@rit.edu) with revised class list.
- Students participate in online tasks on a weekly basis, instructors can view statistics after each task period is finished.
For the next five questions, refer to the picture below. Vector \(\mathbf{W} \) has length 3, and is directed along the vertical axis as shown. Vector \(\mathbf{Q} \) has length 5, and is directed at an angle 127° from the vertical axis. You may use a calculator.

1. What is the dot product of \(\mathbf{W} \) and \(\mathbf{Q} \)?
 -4
 4
 -7.2
 7.2
 -9
 9
 -12
 12
 -15
 15

2. Does the sign of the dot product depend on the coordinate system?
 yes
 no

3. Is the magnitude of the cross product of \(\mathbf{W} \) and \(\mathbf{Q} \) equal to the magnitude of \(\mathbf{W} \)?
 yes
 no
don't know

4. Does the sign of the cross product depend on the coordinate system?
 yes
 no
don't know

5. Compare \(\mathbf{W} \) to \(\mathbf{Q} \).
 a. Are they the same magnitude as each other?
 yes
 no
 don't know
 b. Are they the same direction as each other?
 yes
 no
 don't know

For each pair of vectors, are their dot products positive, negative, or zero?

+ - 0
 + - 0
 + - 0
 + - 0
 + - 0

Below are the initial velocity (\(\mathbf{v}_i \)) and final velocity (\(\mathbf{v}_f \)) for a cart. In the space provided, please draw the change in velocity vector, \(\Delta \mathbf{v} \).

4.1 Concept Tasks
4.1.1 Vectors
Simple vector operations and arithmetic. Includes dot and cross products.
4.1.2 CLASS-Phys

Colorado Learning Attitudes about Science Survey – Physics version.

Here are a number of statements that may or may not describe your beliefs about learning physics. You are asked to rate each statement on a scale where 1 = Strongly Disagree and 5 = Strongly Agree.

Choose one of the above five choices that best expresses your feeling about the statement. If you don’t understand a statement, leave it blank. If you have no strong opinion, choose 3.

A significant problem in learning physics is being able to remember all the information I need to know.

I think the physics I experience in everyday life is relevant to my future career.

I find that reading the text in detail is a good way for me to learn physics.

I cannot learn physics if the teacher does not explain things well in class.

I study physics to learn knowledge that will be useful in my life outside of school.

I do not expect physics equations to help my understanding of the ideas; they are just for doing calculations.

When studying physics, I relate the important information to what I already know about the world.

Understanding physics basically means being able to recall something you’ve read or been shown.

Nearly everyone is capable of understanding physics if they work at it.

I don’t remember a particular equation needed to solve a problem as an adult, there’s nothing much I can do (legally!) to come up with it.

If you find physics a subject you dislike, I usually try to figure out a different route.

I view studying physics as a useful life skill.

Nearly everyone is capable of understanding physics if they work at it.

There could be two different correct values for the answer to a physics problem if I saw two different approaches.

I do not spend more time than necessary on a physics problem before giving up or seeking help from someone else.

To understand physics, I discuss it with friends and other students.

I am not satisfied until I understand why something works the way it does.

Reasoning skills used to understand physics can be helpful to me in my everyday life.

If a problem has more than one solution, I often try them all until one works.

It is possible for physicists to carefully perform the same experiment and get two very different results that are both correct.

When studying physics, I relate the important information to what I already know about the world.

Nearly everyone is capable of understanding physics if they work at it.

Attendees

Noveera Ahmed
Assistant Professor of Biology
St. John Fisher College
nahmed@sjfc.edu

Krista Bellis
Instructor Chemistry and Biochemistry Department
SUNY Fredonia
krista.bellis@fredonia.edu

Geoff Bowers
Assistant Professor of Chemistry
Alfred University
bowers@alfred.edu

Leah Bradley
Senior Assessment Associate
Rochester Institute of Technology
lmbdfp@rit.edu

Sheila Brady-Root
Prof. of Biology/Chemistry
Nazareth College of Rochester
sroot6@naz.edu

Beverly Brown
Associate Professor
Nazareth College of Rochester
bbrown6@naz.edu

Jean Cardinale
Chair and Professor of Biology, Professor of Biomaterials
Alfred University
cardinale@alfred.edu

Mary-Anne Courtney
Lecturer
Rochester Institute of Technology
mxcsbi@rit.edu

Joan Dannenhoffer
Associate Professor Civil & Environmental Engineering
Syracuse University
jvdannen@syr.edu

Betsy Dell
Associate Professor of Mechanical Engineering Technology
Rochester Institute of Technology
emdmet@rit.edu

Brian Edelbach
Assistant Professor of Chemistry
Monroe Community College
bedelbach@monroeccc.edu

Irene M. Evans
Professor of Life Sciences
Rochester Institute of Technology
imesbi@rit.edu

Kathleen Falconer
Lecturer in Elementary Education and Reading
State University of New York College at Buffalo
falconka@buffalostate.edu

Maureen Ferran
Associate Professor
Rochester Institute of Technology
mcfsbi@rit.edu

Scott Franklin
Professor of Physics
Rochester Institute of Technology
svfps@rit.edu

Yousuf George
Assistant Professor of Mathematics
Nazareth College of Rochester
cgeorge0@naz.edu
Elizabeth Hane
Associate Professor
Rochester Institute of Technology
enhsbi@rit.edu

Maryann Herman
Assistant Professor of Biology
St. John Fisher College
mherman@sjfc.edu

Tom Horvath
Professor of Biology & Limnology
SUNY Oneonta
thomas.horvath@oneonta.edu

Anne Houtman
Head and Professor
Rochester Institute of Technology
amhsbi@rit.edu

Nicole Juersivich
Assistant Professor of Mathematics
Nazareth College of Rochester
njuersi9@naz.edu

Karl Korfmacher
Associate Professor
Rochester Institute of Technology
kfkscl@rit.edu

Holly Lawson
Associate Professor of Chemistry, Director Science Education Partnership, Project Shepherd Fredonia Science Center
SUNY Fredonia
holly.lawson@fredonia.edu

Mary Leeman
SMERC Coordinator
Rochester Institute of Technology
mml8004@mail.rit.edu

Dina Newman
Assistant Professor of Biology
Rochester Institute of Technology
dina.newman@rit.edu

Michael Osier
Associate Professor of Life Sciences
Rochester Institute of Technology
mvoscl@rit.edu

Nathan Reff
Assistant Professor of Mathematics
Alfred University
reff@alfred.edu

Eleanor Sayre
Assistant Professor of Physics
Kansas State University
esayre@phys.ksu.edu

Christina Shute
Program Coordinator
Project Kaleidoscope/AAC&U
shute@aacu.org

Lisa Smith
Lecturer for Department of mathematics
SUNY Geneseo
smithl@geneseo.edu

Susan Smith
Assistant Professor
Rochester Institute of Technology
sbssbi@rit.edu

Lydia Tien
Associate Professor
Monroe Community College
lten@monroecc.edu

Anne Wahl
Director of Assessment
Rochester Institute of Technology
agwvpa@rit.edu

Kate Wright
Assistant Professor of Biology
Rochester Institute of Technology
lkwsbi@rit.edu

Heather Zimbler-DeLorenzo
Assistant Professor of Biology
Alfred University
zimbler@alfred.edu