Quality Collaboratives (QC) Case Study – September 2015
QC Dyad: Ivy Tech Community College – Central Indiana & Indiana University – Purdue University Indianapolis (IUPUI)
Contact: Kathy Johnson, interim executive vice chancellor and chief academic officer & Mel Wininger, senior lecturer in English (both of IUPUI)

Enhancing Partnerships Between
Ivy Tech Community College – Central Indiana and IUPUI

Ivy Tech Community College’s Central Indiana campus is situated just 2.4 miles north of Indiana University – Purdue University Indianapolis (IUPUI), and the distance is readily navigable by bus or bicycle. For the past five years, about six hundred Ivy Tech students have transferred to IUPUI each fall on average. A shared “Passport Office” supports students on both campuses with academic advising and other student support services intended to facilitate students’ co-enrollment and transfer across our two campuses. Despite our collective efforts to facilitate the academic and social integration of students as they navigate to four-year degree programs, both campuses had paid considerably less attention to cultivating faculty networks which would help to ensure that our curricula were sufficiently aligned to foster academic success at IUPUI. We saw the Quality Collaboratives project as a perfect mechanism for helping to address this situation, and jumped at the opportunity to become involved.

IUPUI is a large and relatively complex core campus of Indiana University, with two schools conferring degrees through Purdue University, and fifteen schools conferring degrees through Indiana University. Rather than focusing our project on a broad swath of undergraduate transfer pathways, we decided to focus strategically on the engineering transfer pathway as well as on the general education program’s college writing practices and knowledge. We chose engineering because Ivy Tech was developing a pre-engineering pathway and the institution’s faculty had recently begun attending curriculum and assessment meetings at the Purdue School of Engineering and Technology at IUPUI. The timing of this project aligned perfectly with the admission of the first cohort of pre-engineering students at Ivy Tech. We identified writing as our other area of focus, because the cross-institutional work had begun for writing faculty at least a year in advance of the project. Campuses share associate faculty and several full-time faculty at Ivy Tech were already associate faculty members at IUPUI. Though friendly, collaborative personal and professional relationships already existed across both programs, some notable suspicions, concerns, and evidence of transfer difficulties did exist. Most notably, although the writing curricula at both institutions looked much alike on paper, faculty noticed differences in what each institution established as the actual course content, subsequently there were suspicions regarding
different thresholds for competency. The question was this: Did variations in content and assessment translate into variations in what transfer students could actually do once they enrolled at IUPUI?

We focused on writing in the first year of the project. Our approach at the outset was to capitalize fully on processes and approaches that were familiar to and highly valued by faculty on both campuses. Rather than leading with the Degree Qualifications Profile (DQP: http://degreeprofile.org/), we viewed it as a destination that would likely be better understood and appreciated if it followed naturally from other work. Statewide meetings of writing administrators from both two- and four-year institutions had been ongoing for more than a year to rethink assessment in the transferable credit-bearing composition course, culminating in a mass meeting at the annual Indiana Teachers of Writing conference in 2011. A statewide sample of student writing had been collected from across multiple campuses of Indiana University and Ivy Tech to foster dialogue regarding the alignment of values, expectations, and learning outcomes in college writing courses. These gatherings had engaged Bob Broad, a research consultant with Just Words Consulting Group at Illinois State University, and had engaged attendees in the practice of Dynamic Criteria Mapping (Broad 2003; Broad et al. 2009), which became central to our project as we attempted to create change and to seek understanding across the institutions at the faculty and program levels.

Dynamic Criteria Mapping (DCM) is a process developed within writing programs to foster “organic assessment” among faculty. It is an extension of Glaser and Strauss’ grounded theory (1967) approach, which is an inductive methodology that creates theory from the systematic description, coding, and analysis of a corpus of data. In DCM, the data corpus is generated as faculty carefully review student work and nominate the characteristics (or criteria) of the work that they value, the characteristics they value but are missing, and finally, the aspects of the work they do not value. These criteria are then graphically mapped in order to create a visual and conceptual sketch of how categories of criteria for evaluation are related to each other, and this map is revised over time. DCM was a familiar and trusted process for the writing faculty, who appreciated the opportunities to engage in professional development, community building, and more detailed reporting to students and the wider community about which criteria are most valued in students’ written work. We therefore decided to launch our Quality Collaboratives project with an inter-institutional DCM session focused on work from freshman composition at Ivy Tech and IUPUI. A diverse group of tenured, nontenured, and associate faculty was gathered from both freshman composition and technical communication courses, and the Degree
Qualifications Profile was introduced as a tool that could help provide common language and benchmarks for standards at the associate degree level.

In the second year of the project, we extended the use of the DCM process to the pre-professional domain of engineering education by having faculty review and discuss students’ sophomore-level engineering projects and responses to coding assignments. We have been impressed by the positive responses of faculty in both academic domains, who report that they benefit from the opportunity to network with colleagues teaching the same course at different institutions as well as from the rich dialogue about student work. The practice is inherently positive in that it begins with a consideration of what characteristics are “valued” even among the least polished examples of student work. Using the Degree Qualifications Profile as a framework for the process helps to ensure that faculty attend to criteria that align with more foundational intellectual skills (e.g., critical thinking, written communication, and quantitative literacy), as well as other domains of competence that are the goals of a liberal education (e.g., use of information resources, civic learning). Normative criteria that could be used to populate shared rubrics evolve naturally from conversations about actual student work. We found it quite striking that across the domains of writing and engineering there was considerable commonality in the specific aspects of student work that were valued by faculty (e.g., parsimony, organization, and creativity).

While strong and effective communities of practice have been a successful outcome of our work, we also have experienced challenges. First, it was immediately apparent that there were striking differences in faculty roles across the two institutions, which made it considerably more difficult for faculty from Ivy Tech to participate in project-related workshops and activities. Curricula and assessment at Ivy Tech are standardized across the statewide system, which limited faculty members’ ability to alter the assignments they used in their courses. As our work rested heavily on a community of practice model, transitions in leadership at Ivy Tech and among the faculty connected to our work proved disruptive, particularly at the beginning of our project. Our campuses used different Student Information Systems and learning technologies, thwarting our initial plans to develop a transfer electronic portfolio to help Ivy Tech students showcase their academic accomplishments from their associate degree work. Finally, it has been difficult to translate dynamic criteria maps into assessment rubrics seamlessly when the rubrics are deployed and used reliably across two- and four-year degree programs. This is not entirely surprising, given that DCM evolved in response to the unsatisfactory elements of traditional rubrics. As Broad (2003, 2) writes, “in pursuit of their normative and formative..."
purposes, traditional rubrics achieve evaluative brevity and clarity. In so doing, they surrender their descriptive and informative potential: responsiveness, detail, and complexity in accounting for how writing is actually evaluated.” Nevertheless, the use of materials from the Quality Collaboratives writing project, in particular a revised grading rubric that represents first-year course outcomes in line with the values the DCM process revealed, have made their way into the Ivy Tech freshman composition course and have become part of the ongoing work with IUPUI’s equivalent course. In addition, these discussions have influenced second-level writing requirements at both institutions.

Well-forged faculty networks and some small—though significant— modifications to Ivy Tech’s writing and pre-engineering curricula have ultimately sustained the Indiana Quality Collaboratives project work. Though more difficult to measure, we believe that there is an improvement in the level of trust and collegiality between the faculty, which hopefully will be nurtured and sustained by program chairs and deans, and used as an impetus to cultivate additional faculty networks in the future.

References

